首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   936篇
  免费   431篇
  国内免费   315篇
测绘学   10篇
大气科学   12篇
地球物理   443篇
地质学   1017篇
海洋学   112篇
综合类   22篇
自然地理   66篇
  2024年   4篇
  2023年   17篇
  2022年   29篇
  2021年   43篇
  2020年   75篇
  2019年   67篇
  2018年   77篇
  2017年   70篇
  2016年   81篇
  2015年   76篇
  2014年   92篇
  2013年   114篇
  2012年   83篇
  2011年   71篇
  2010年   63篇
  2009年   52篇
  2008年   58篇
  2007年   62篇
  2006年   82篇
  2005年   75篇
  2004年   52篇
  2003年   40篇
  2002年   42篇
  2001年   34篇
  2000年   37篇
  1999年   39篇
  1998年   30篇
  1997年   24篇
  1996年   11篇
  1995年   14篇
  1994年   16篇
  1993年   14篇
  1992年   7篇
  1991年   9篇
  1990年   8篇
  1989年   3篇
  1988年   3篇
  1987年   2篇
  1986年   3篇
  1985年   3篇
排序方式: 共有1682条查询结果,搜索用时 914 毫秒
51.
The strong vertical gradient in soil and subsoil saturated hydraulic conductivity is characteristic feature of the hydrology of catchments. Despite the potential importance of these strong gradients, they have proven difficult to model using robust physically based schemes. This has hampered the testing of hypotheses about the implications of such vertical gradients for subsurface flow paths, residence times and transit time distribution. Here we present a general semi‐analytical solution for the simulation of 2D steady‐state saturated‐unsaturated flow in hillslopes with saturated hydraulic conductivity that declines exponentially with depth. The grid‐free solution satisfies mass balance exactly over the entire saturated and unsaturated zones. The new method provides continuous solutions for head, flow and velocity in both saturated and unsaturated zones without any interpolation process as is common in discrete numerical schemes. This solution efficiently generates flow pathlines and transit time distributions in hillslopes with the assumption of depth‐varying saturated hydraulic conductivity. The model outputs reveal the pronounced effect that changing the strength of the exponential decline in saturated hydraulic conductivity has on the flow pathlines, residence time and transit time distribution. This new steady‐state model may be useful to others for posing hypotheses about how different depth functions for hydraulic conductivity influence catchment hydrological response. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   
52.
Within the framework of our discontinuous deformation analysis for rock failure algorithm, this paper presents a two‐dimensional coupled hydromechanical discontinuum model for simulating the rock hydraulic fracturing process. In the proposed approach, based on the generated joint network, the calculation of fluid mechanics is performed first to obtain the seepage pressure near the tips of existing cracks, and then the fluid pressure is treated as linearly distributed loads on corresponding block boundaries. The contribution of the hydraulic pressure to the initiation/propagation of the cracks is considered by adding the components of these blocks into the force matrix of the global equilibrium equation. Finally, failure criteria are applied at the crack tips to determine the occurrence of cracking events. Several verification examples are simulated, and the results show that this newly proposed numerical model can simulate the hydraulic fracturing process correctly and effectively. Although the numerical and experimental verifications focus on one unique preexisting crack, because of the capability of discontinuous deformation analysis in simulating block‐like structures, the proposed approach is capable of modeling rock hydraulic fracturing processes. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   
53.
多点液压式波浪能海水淡化系统建模与仿真   总被引:1,自引:1,他引:0  
为缓解淡水资源短缺及化石能源过度使用问题,提出多点液压式波浪能海水淡化系统,该系统主要由采能装置、液压传递系统与反渗透膜海水淡化设备组成。系统的采能装置采用振荡浮子式,可将波浪能转换为浮子振荡从而被液压系统吸收达到采集波浪能的目的。为了提高液压式波浪能海水淡化系统的采能效率及淡水率,利用AMEsim软件对液压传递系统进行建模与仿真,分析了蓄能器、浮子个数及波高对液压传递系统输出响应的影响。结果表明:蓄能器能够使液压马达的输出响应更加稳定;当浮子的数量增加时,液压系统达到稳定的运行状态所需的时间更短,从而有利于提高系统的效率;波高在2 m左右时,本系统的产水量达到最大。  相似文献   
54.
Understanding hydrological processes in wetlands may be complicated by management practices and complex groundwater/surface water interactions. This is especially true for wetlands underlain by permeable geology, such as chalk. In this study, the physically based, distributed model MIKE SHE is used to simulate hydrological processes at the Centre for Ecology and Hydrology River Lambourn Observatory, Boxford, Berkshire, UK. This comprises a 10‐ha lowland, chalk valley bottom, riparian wetland designated for its conservation value and scientific interest. Channel management and a compound geology exert important, but to date not completely understood, influences upon hydrological conditions. Model calibration and validation were based upon comparisons of observed and simulated groundwater heads and channel stages over an equally split 20‐month period. Model results are generally consistent with field observations and include short‐term responses to events as well as longer‐term seasonal trends. An intrinsic difficulty in representing compressible, anisotropic soils limited otherwise excellent performance in some areas. Hydrological processes in the wetland are dominated by the interaction between groundwater and surface water. Channel stage provides head boundaries for broad water levels across the wetland, whilst areas of groundwater upwelling control discrete head elevations. A relic surface drainage network confines flooding extents and routes seepage to the main channels. In‐channel macrophyte growth and its management have an acute effect on water levels and the proportional contribution of groundwater and surface water. The implications of model results for management of conservation species and their associated habitats are discussed. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   
55.
River confluences and their associated tributaries are key morphodynamic nodes that play important roles in controlling hydraulic geometry and hyporheic water exchange in fluvial networks. However, the existing knowledge regarding hyporheic water exchange associated with river confluence morphology is relatively scarce. On January 14 and 15, 2016, the general hydraulic and morphological characteristics of the confluent meander bend (CMB) between the Juehe River and the Haohe River in the southern region of Xi'an City, Shaanxi Province, China, were investigated. The patterns and magnitudes of vertical hyporheic water exchange (VHWE) were estimated based on a one‐dimensional heat steady‐state model, whereas the sediment vertical hydraulic conductivity (Kv) was calculated via in situ permeameter tests. The results demonstrated that 6 hydrodynamic zones and their extensions were observed at the CMB during the test period. These zones were likely controlled by the obtuse junction angle and low momentum flux ratio, influencing the sediment grain size distribution of the CMB. The VHWE patterns at the test site during the test period mostly showed upwelling flow dominated by regional groundwater discharging into the river. The occurrence of longitudinal downwelling and upwelling patterns along the meander bend at the CMB was likely subjected to the comprehensive influences of the local sinuosity of the meander bend and regional groundwater discharge and finally formed regional and local flow paths. Additionally, in dominated upwelling areas, the change in VHWE magnitudes was nearly consistent with that in Kv values, and higher values of both variables generally occurred in erosional zones near the thalweg paths of the CMB, which were mostly made up of sand and gravel. This was potentially caused by the erosional and depositional processes subjected to confluence morphology. Furthermore, lower Kv values observed in downwelling areas at the CMB were attributed to sediment clogging caused by local downwelling flow. The confluence morphology and sediment Kv are thus likely the driving factors that cause local variations in the VHWE of fluvial systems.  相似文献   
56.
Karst systems provide water for domestic and industrial uses and for generating hydropower, but they can also create fluvial hazards, such as upstream back‐flooding and downstream karst flash‐flood events. However, these hazards are difficult to foresee due to the complex recharge‐discharge processes as well as the lack of information on the inside of the system, which has often not been completely surveyed by speleologists or explored by boreholes. To overcome these difficulties, hydro‐chemical data from the monitoring system in the Middle Bussento Karst System (MBSKS), one of the first Experimental Karst Systems in southern Italy, were recorded and previously discussed. Based on shared background in flood karst hydraulic modeling, this paper describes the conceptual premises and rationale of a general‐purpose hydraulic model that is suitable both for the MBSKS and for other Mediterranean, multi‐recharge, mature, conduit‐dominated karst systems. To test the reliability of the model, simulations of time–space behavior and response are performed using natural and artificial flood pulses “as tracers”, considering a “pulse” as a significant variation in water quantity and/or quality. The results of the model explain the interactions between allogenic, autogenic, and anthropogenic recharges from differentiated sources and phreatic conduit systems. These results also clarify the overall response of karst springs at typical time scales of flood pulses. Table acronym name  相似文献   
57.
Spatial heterogeneity is ubiquitous in nature, which may significantly affect the soil hydraulic property curves. The models of a closed‐form functional relationship of soil hydraulic property curves (e.g. VG model or exponential model) are valid at point or local scale based on a point‐scale hydrological process, but how do scale effects of heterogeneity have an influence on the parameters of these models when the models are used in a larger scale process? This paper uses a two‐dimensional variably saturated flow and solute transport finite element model (VSAFT2) to simulate variations of pressure and moisture content in the soil flume under a constant head boundary condition. By changing different numerical simulation block sizes, a quantitative evaluation of parameter variations in the VG model, resulting from the scale effects, is presented. Results show that the parameters of soil hydraulic properties are independent of scale in homogeneous media. Parameters of α and n in homogeneous media, which are estimated by using the unsaturated hydraulic conductivity curve (UHC) or the soil water retention curve (WRC), are identical. Variations of local heterogeneities strongly affect the soil hydraulic properties, and the scale affects the results of the parameter estimations when numerical experiments are conducted. Furthermore, the discrepancy of each curve becomes considerable when moisture content becomes closer to a dry situation. Parameters estimated by UHC are totally different from the ones estimated by WRC. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   
58.
The initiation and propagation of directional hydraulic fracturing (DHF) was investigated based on true tri-axial experiment and finite element modeling. The influences of notch angle, notch length and injection rate on the DHF were investigated. The initiation and propagation of DHF was modeled by a 3D nonlinear finite element method. A comparison between experimental investigation and numerical modeling results indicates that there is a good correlation between unbalanced force (UF) and fracturing. UF can be used to predict the hydraulic fracture initiation and propagation.  相似文献   
59.
综合糙率是采用曼宁公式确定河道水位和流量关系的关键参数。在河道冰封期,冰盖的出现增加了流动的阻力,明流条件下确定的综合糙率不再适用,需要重新估算。基于Einstein阻力划分过流断面的原理,冰盖下矩形河道的过水断面可划分为冰盖区、河床区和边壁区。根据总流的连续性方程,在确定各分区糙率系数、水力半径和断面面积的基础上,提出了冰盖下矩形河道综合糙率的计算公式。采用已有的试验水槽测量数据和天然河道实测资料对公式进行了验证,结果表明:公式计算的综合糙率与实测值吻合较好,与Einstein公式和Sabaneev公式相比,计算精度更高;对于冰封水流,宽浅河道采用分区水深代替水力半径进行简化计算的条件有别于明渠水流,在宽深比大于20时,计算结果才满足精度要求。  相似文献   
60.
赣北红土区工程堆积体坡面水动力特性   总被引:1,自引:0,他引:1       下载免费PDF全文
为探明锥状工程堆积体坡面薄层水流剥蚀率与水力要素之间的关系, 室内模拟赣北红土区散乱锥状工程堆积体。通过人工降雨试验, 设计4种降雨强度(1.0~2.5mm/min)和3种砾石含量(10%~30%)完全组合。采用灰色关联度分析法, 评估坡面水力参数与土壤剥蚀率之间的关联度。结果表明:① 在试验条件下, 坡面水流功率与土壤剥蚀率呈幂函数关系;② 当堆积体砾石含量一定时, 以降雨强度为变量能反映堆积体坡面水力参数与土壤剥蚀率之间的关联度;③ 当降雨强度一定时, 大雨强下(≥1.5mm/min)堆积体砾石含量不宜作为灰色关联度分析的变量。综上所述, 水流功率是描述赣北红土区锥状工程堆积体侵蚀过程的最佳水力参数, 可用于建立堆积体侵蚀物理模型。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号